The shepherd who had three loaves should get one coin and the shepherd who had five loaves should get seven coins. If there were eight loaves and three men, each man ate two and two-thirds loaves. So the first shepherd gave the hunter one-third of a loaf and the second shepherd gave the hunter two and one-third loaves. The shepherd who gave one-third of a loaf should get one coin and the one who gave seven-thirds of a loaf should get seven coins.

First think who will operate each bulb, obviously person #2 will do all the even numbers, and say person #10 will operate all the bulbs that end in a zero. So who would operate for example bulb 48: Persons numbered: 1 & 48, 2 & 24, 3 & 16, 4 & 12, 6 & 8 ........ That is all the factors (numbers by which 48 is divisible) will be in pairs. This means that for every person who switches a bulb on there will be someone to switch it off. This willl result in the bulb being back at it's original state. So why aren't all the bulbs off? Think of bulb 36:- The factors are: 1 & 36, 2 & 13, 6 & 6 Well in this case whilst all the factors are in pairs the number 6 is paired with it's self. Clearly the sixth person will only flick the bulb once and so the pairs don't cancel. This is true of all the square numbers. There are 10 square numbers between 1 and 100 (1, 4, 9, 16, 25, 36, 49, 64, 81 & 100) hence 10 bulbs remain on.

The answer is: a dice. An explanation: "It's always 1 to 6": the numbers on the faces of the dice, "it's always 15 to 20": the sum of the exposed faces when the dice comes to rest after being thrown, "it's always 5": the number of exposed faces when the dice is at rest, "but it's never 21": the sum of the exposed faces is never 21 when the dice is at rest, "unless it's flying": the sum of all exposed faces when the dice is flying is 21 (1 + 2 + 3 + 4 + 5 + 6).